If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/x^2=400
We move all terms to the left:
7/x^2-(400)=0
Domain of the equation: x^2!=0We multiply all the terms by the denominator
x^2!=0/
x^2!=√0
x!=0
x∈R
-400*x^2+7=0
We add all the numbers together, and all the variables
-400x^2+7=0
a = -400; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-400)·7
Δ = 11200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11200}=\sqrt{1600*7}=\sqrt{1600}*\sqrt{7}=40\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{7}}{2*-400}=\frac{0-40\sqrt{7}}{-800} =-\frac{40\sqrt{7}}{-800} =-\frac{\sqrt{7}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{7}}{2*-400}=\frac{0+40\sqrt{7}}{-800} =\frac{40\sqrt{7}}{-800} =\frac{\sqrt{7}}{-20} $
| 5(2x+9)=-33+28 | | 112=7(2a+2) | | 9b-3b+6b= | | 11(8c+5)−8c=2(40c+25)+5 | | -3(-7u+5)-8u=7(u-3)-3 | | 150m-125m+38,000=40,000-175m | | 45+6+13d=168 | | C(p)=4(3p+25) | | 6x-9=-2x-2 | | 110=5(1+3x) | | 3(2x-4)=-2(-3x-5) | | -0,6x=-36 | | -4n+5(5n+5)=172 | | (-12x^2)-(9x)-(6)=0 | | -12x^2-9x-6=0 | | -5/2u=-11 | | 2(5b-3)=268 | | 3(j+15)=15(2j+3) | | 7-(5/2)(8x-6)+2x=32 | | 9−8x+20=−3 | | 38+x=3(11+x) | | 3e/5-2=10 | | 8.6x+4.4x=11 | | 6t+2(4t-3)=6+5(t+3) | | -10=-5u+2(u-2) | | -9(t-2)=4(t-15) | | 5x–6=2x-3 | | 18=4x-29-9x | | 9=-w/7 | | c-15=-16 | | 20=4-4(t-2) | | (15)e+9=15+9 |